Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.

Identifieur interne : 002D98 ( Main/Exploration ); précédent : 002D97; suivant : 002D99

Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.

Auteurs : Bruno Clair [France] ; Tancrède Alméras ; Gilles Pilate ; Delphine Jullien ; Junji Sugiyama ; Christian Riekel

Source :

RBID : pubmed:21068364

Descripteurs français

English descriptors

Abstract

Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa 'I45-51'). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood.

DOI: 10.1104/pp.110.167270
PubMed: 21068364
PubMed Central: PMC3075793


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.</title>
<author>
<name sortKey="Clair, Bruno" sort="Clair, Bruno" uniqKey="Clair B" first="Bruno" last="Clair">Bruno Clair</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire de Mécanique et Génie Civil, CNRS, Université Montpellier 2, 34095 Montpellier, France. bruno.clair@univ-montp2.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Mécanique et Génie Civil, CNRS, Université Montpellier 2, 34095 Montpellier</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
</affiliation>
</author>
<author>
<name sortKey="Almeras, Tancrede" sort="Almeras, Tancrede" uniqKey="Almeras T" first="Tancrède" last="Alméras">Tancrède Alméras</name>
</author>
<author>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
</author>
<author>
<name sortKey="Jullien, Delphine" sort="Jullien, Delphine" uniqKey="Jullien D" first="Delphine" last="Jullien">Delphine Jullien</name>
</author>
<author>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
</author>
<author>
<name sortKey="Riekel, Christian" sort="Riekel, Christian" uniqKey="Riekel C" first="Christian" last="Riekel">Christian Riekel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21068364</idno>
<idno type="pmid">21068364</idno>
<idno type="doi">10.1104/pp.110.167270</idno>
<idno type="pmc">PMC3075793</idno>
<idno type="wicri:Area/Main/Corpus">003018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003018</idno>
<idno type="wicri:Area/Main/Curation">003018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003018</idno>
<idno type="wicri:Area/Main/Exploration">003018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.</title>
<author>
<name sortKey="Clair, Bruno" sort="Clair, Bruno" uniqKey="Clair B" first="Bruno" last="Clair">Bruno Clair</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratoire de Mécanique et Génie Civil, CNRS, Université Montpellier 2, 34095 Montpellier, France. bruno.clair@univ-montp2.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Mécanique et Génie Civil, CNRS, Université Montpellier 2, 34095 Montpellier</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
</affiliation>
</author>
<author>
<name sortKey="Almeras, Tancrede" sort="Almeras, Tancrede" uniqKey="Almeras T" first="Tancrède" last="Alméras">Tancrède Alméras</name>
</author>
<author>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
</author>
<author>
<name sortKey="Jullien, Delphine" sort="Jullien, Delphine" uniqKey="Jullien D" first="Delphine" last="Jullien">Delphine Jullien</name>
</author>
<author>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
</author>
<author>
<name sortKey="Riekel, Christian" sort="Riekel, Christian" uniqKey="Riekel C" first="Christian" last="Riekel">Christian Riekel</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena (MeSH)</term>
<term>Cellulose (metabolism)</term>
<term>Crystallization (MeSH)</term>
<term>Microfibrils (chemistry)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Stress, Mechanical (MeSH)</term>
<term>Synchrotrons (MeSH)</term>
<term>Wood (anatomy & histology)</term>
<term>Wood (growth & development)</term>
<term>Wood (physiology)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (anatomie et histologie)</term>
<term>Bois (croissance et développement)</term>
<term>Bois (physiologie)</term>
<term>Cellulose (métabolisme)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Cristallisation (MeSH)</term>
<term>Diffraction des rayons X (MeSH)</term>
<term>Microfibrilles (composition chimique)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Synchrotrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Microfibrils</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Microfibrilles</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Crystallization</term>
<term>Stress, Mechanical</term>
<term>Synchrotrons</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Contrainte mécanique</term>
<term>Cristallisation</term>
<term>Diffraction des rayons X</term>
<term>Phénomènes biomécaniques</term>
<term>Synchrotrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa 'I45-51'). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21068364</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>155</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.</ArticleTitle>
<Pagination>
<MedlinePgn>562-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.167270</ELocationID>
<Abstract>
<AbstractText>Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa 'I45-51'). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Clair</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Mécanique et Génie Civil, CNRS, Université Montpellier 2, 34095 Montpellier, France. bruno.clair@univ-montp2.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alméras</LastName>
<ForeName>Tancrède</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pilate</LastName>
<ForeName>Gilles</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jullien</LastName>
<ForeName>Delphine</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sugiyama</LastName>
<ForeName>Junji</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riekel</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020894" MajorTopicYN="N">Microfibrils</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="Y">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017356" MajorTopicYN="Y">Synchrotrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21068364</ArticleId>
<ArticleId IdType="pii">pp.110.167270</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.167270</ArticleId>
<ArticleId IdType="pmc">PMC3075793</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2008 Jun;95(6):655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Apr;96(4):719-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Nov;102(5):659-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Dec 27;339(18):2889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15582616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):3023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Nov;56(4):531-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2008 Feb;9(2):494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18163579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2009 Feb 7;256(3):370-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Oct;93(10):1477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Nov;95(11):1337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 Sep-Oct;327(9-10):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15587080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2002 Jan-Feb;3(1):182-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11866571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Jun;48(6):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 Aug;171(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20438848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):1128-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Montpellier</li>
</settlement>
<orgName>
<li>Université Montpellier 2</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Almeras, Tancrede" sort="Almeras, Tancrede" uniqKey="Almeras T" first="Tancrède" last="Alméras">Tancrède Alméras</name>
<name sortKey="Jullien, Delphine" sort="Jullien, Delphine" uniqKey="Jullien D" first="Delphine" last="Jullien">Delphine Jullien</name>
<name sortKey="Pilate, Gilles" sort="Pilate, Gilles" uniqKey="Pilate G" first="Gilles" last="Pilate">Gilles Pilate</name>
<name sortKey="Riekel, Christian" sort="Riekel, Christian" uniqKey="Riekel C" first="Christian" last="Riekel">Christian Riekel</name>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
</noCountry>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Clair, Bruno" sort="Clair, Bruno" uniqKey="Clair B" first="Bruno" last="Clair">Bruno Clair</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21068364
   |texte=   Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21068364" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020